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The purpose of this white paper is to frame the challenging problems of exascale data analysis 
and visualization. A successful framing of these challenges will guide future research and 
development and highlight the differences from today's approaches. One key difference is the 
notion of a cost per insight in terms of power and storage used. This notion of constraints on our 
insights challenges the premise of our traditional workflow.  
 
Power constraints are driven by reducing the many financial costs, including facility, power and 
cooling costs, associated with the massive power requirements that are projected for an exascale 
machine without research and development interventions. Specifically, the United States 
Department of Energy's exascale strategy identifies target goals for peak performance to increase 
three orders of magnitude while system power is only targeted to increase by a factor of two. To 
keep within an extremely limited power budget, locality during computation is extremely 
important. The most expensive operation is data movement, from both the power and 
performance perspective, moving data up from the CPU out through the memory hierarchy 
including out to persistent storage and the network.  
 
Storage constraints are also driven by financial costs including power costs. Future storage 
technology projections suggest that the gap between both capacity/bandwidth and FLOPS will 
widen as we move towards exascale. Therefore, we expect the storage system of an exascale 
supercomputer to be smaller and slower compared in a relative way with the peak FLOPS of 
today's generation of supercomputers for a proportionally similar level of investment.  
 
In light of these constraints, it is instructive to review current and proposed approaches. In a 
traditional post-processing oriented visualization and analysis approach, temporal simulation 
snapshots are saved at regular intervals. This approach incorporates the process of saving 
checkpoints for later restart in case of errors. Traditionally, these full simulation checkpoint 
snapshots and additional smaller visualization and analysis data are interactively analyzed after 
the simulation run is complete. The visualization and analysis community has identified this 
approach unworkable at extreme scale due to power and storage constraints. An emerging 
consensus is that significantly more visualization and analysis should occur in situ, that is, during 
the simulation run while the data is resident in memory.  
 
This change of focus from post-processing to in situ analysis suggests a set of emerging 
guidelines about the simulation analysis process: 
 
Sampling and Uncertainty Quantification of Simulation Data are Needed – During in situ 
data analysis the analyst has access to the entire simulation data in all its complexity, including 
spatial, temporal, multivariate and variable type domains. This data is available only briefly at 
simulation runtime when it is resident in memory and then deleted when the simulation 
advances. Given our budgeting constraints, it becomes clear that in situ analysis is a form of 



sampling. The traditional workflow samples fully on the spatial, multivariate and variable type 
domains at the expense of sampling fully in the temporal domain. Simulation scientists have the 
opportunity to significantly increase the quality of their analysis results by choosing how to 
sample from each domain. The quality of their results can be measured through combined in situ 
sampling/uncertainty quantification techniques. For example, in our work, we statistically 
sample using a stratified random sampling approach on the MC^3 cosmological particle 
simulation. We store these samples in a level-of-detail organization for later interactive 
progressive visualization and feature analysis. By sampling during the simulation, we are able to 
analyze the entire particle population to record full population statistics and quantify sample 
error [1]. 
 
Deliberate Analysis Choices Are Necessary – In the traditional approach, during a simulation 
run, full simulation snapshots are saved. This has led to the belief that these snapshots can 
answer arbitrary analysis post-processing questions because “all the data has been saved”. As 
noted above this is not necessarily true for the time domain. A related belief about in situ 
techniques is that automatic selection of data at runtime reduces the type of questions that can be 
asked about the data during post-processing analysis. It is important to appreciate the traditional 
post processing approach of saving full simulation snapshots is, in and of itself, an inherently in 
situ activity.  Saving full simulation snapshots in time is simply one choice among many for 
extracting data and/or information from running simulations. An alternative perspective is since 
our analysis is constrained by a power and storage budget it is important to make deliberate 
analysis choices before the simulation is run, about what scientific questions will be answered, 
and then to explicitly save the appropriate data. In the observational/experimental community, 
pre-planned data reducing streaming analysis is common practice. Custom software and 
hardware accelerators are typically employed to reduce and analyze data in real-time for 
accelerator physics, fusion reactors and cyber-security. Our focus on in situ approaches aligns 
the supercomputing community with the observational/experimental community supporting 
synergistic approaches in the future. Key research questions to answer are: How general and with 
what quality can analysis questions be answered from compact data products generated in situ 
after the simulation run has completed, in a post-processing manner? What new mathematical or 
analysis techniques will support this process?  
 
Data Reduction and Prioritization Is Required – An additional corollary to notion of a budget 
is the requirement that the simulation data stream must be significantly reduced into a compact 
analysis product in order to fit within the budget. This reduction does not have to be via a 
statistical sampling; visualization operations and feature extraction algorithms can also be 
considered a type of sampling strategy. An interesting way to approach the inclusion of the most 
important data within a budget is to prioritize data using a greedy algorithm saving the highest 
priority information as the simulation progresses. For example, in recent work we measured 
temporal entropy in a running simulation. A memory buffer collected time steps with the highest 
entropy by having time steps with higher entropy overwrite ones with lower entropy. The 
resulting collection of high entropy time steps provides a summary of the phases of the 
simulations in which the most change occurs. 
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